September 23, 2024, CENTRAL ELEMENTARY SUMMA CANISTER REPORT COMMERCE CITY NORTH DENVER COMMUNITY AIR MONITORING NETWORK COMMERCE CITY, COLORADO

Prepared For:

Suncor Energy (U.S.A.) Inc. 5801 Brighton Boulevard Commerce City, CO 80022

Prepared By:

Montrose Air Quality Services, LLC 990 W. 43rd Avenue Denver, CO 80211

Document Number: 317AA-049284-RT-680
Report Period: September 23, 2024
Report Date: January 15, 2025

TABLE OF CONTENTS

SEC	PAGE
EXE	ECUTIVE SUMMARY3
1.0	INTRODUCTION4
	1.1 Air Monitoring Site Description4
2.0	METHODS7
	2.1 Air Sampling Methods
	2.2 Screening Health Risk Assessment Methods9
3.0	RESULTS11
	3.1 Summary of Air Sampling Results11
	3.2 Screening Health Risk Assessment Results
	Uncertainty Evaluation
5.0	Program Changes
LIS	T OF APPENDICES
Α	SAMPLE CHAIN OF CUSTODIES
LIS	T OF TABLES
1-1	CCND MONITORS AND SUMMA CANISTER SAMPLING LOCATIONS6
1-2	SELECTED ANALYTES MEASURED IN SUMMA CANISTERS8
1-3	CM5 – CENTRAL ELEMENTARY SCHOOL LOCATION PLANNED AND SENSOR - TRIGGERED12
EVE	ENT SAMPLE CONCENTRATIONS (PPBV)12
	SUMMA CANISTER SCREENING HEALTH RISK ASSESSMENT: COMPOUND-SPECIFIC HAZARD QUOTIENTS AND HAZARD INDICES FOR CCND CM5 - CENTRAL
	ELEMENTARY SCHOOL MONITORING SITE
LIS	T OF FIGURES
1-1	MAP OF TEN CCND MONITOR LOCATIONS5
1-2	CM5 VOC AND WIND DIRECTION September 23, 2024, 2:30 A.M 4:30 A.M
1-3	CM5 WIND ROSE September 23, 2024, 2:30 A.M. – 4:30 A.M
	COMPOUND-SPECIFIC HAZARD QUOTIENTS FOR VOCS DETECTED IN THE September 23, 2024, SENSOR-TRIGGERED EVENT SAMPLE AT CM5 CENTRAL ELEMENTARY SCHOOL LOCATION
1-5	HAZARD INDICIES AT THE CCND CM5 - CENTRAL ELEMENTARY SCHOOL LOCATION FOR PLANNED AND SENSOR TRIGGERED AIR SAMPLES17

EXECUTIVE SUMMARY

In response to feedback received by Suncor Energy (U.S.A.) Inc. (Suncor) through community engagement conducted in the fall of 2020, Suncor voluntarily committed to developing a continuous, near real-time air monitoring program to gain insight into air quality for neighborhoods in the vicinity of the Suncor refinery in Commerce City, Colorado. Montrose Environmental Group - Air Quality Services, LLC (Montrose) was contracted by Suncor to deploy, operate and maintain the network in the Commerce City and North Denver (CCND) neighborhoods. Air monitoring was accomplished through three separate technical approaches: (1) continuous, near real-time monitoring for the following analytes: carbon monoxide (CO), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), nitrogen oxide or nitric oxide (NO), nitrogen dioxide (NO₂), particulate matter (PM_{2.5}) and total volatile organic compounds (VOCs); (2) periodic collection and laboratory analysis for the presence of specific VOCs from 6-liter evacuated stainless steel ("Summa") canisters; and (3) periodic real-time air monitoring throughout neighborhoods using a mobile monitoring van to detect presence of specific VOCs. An "analyte" is a material that a measuring device is designed to detect and measure. It may be a chemical gas, an airborne particle, or other type of material.

Approach number two consists of collection of air data to measure the presence of specific VOCs. This approach has two parts: collection of planned air samples and collection of unplanned, VOC sensor-triggered air samples. Planned air samples were collected across 13 different locations, ten from within the CCND neighborhoods and three from non-CCND locations (urban and rural background), over a 1-hour time period by a field technician, in Q2 2024. VOC sensor-triggered samples are collected automatically when total VOCs are detected at an airborne concentration of 1 part per million (ppm) or higher for 1 minute or longer. This report analyzes the data from a VOC sensor-triggered air sample collected at Central Elementary School (CM5) on September 23, 2024.

Health scientists from CTEH, LLC (CTEH®) (a subsidiary company of Montrose) performed a screening-level human health risk assessment based on the data collected by Montrose. A screening-level assessment uses the most health conservative assumptions about exposure and chemical toxicity. This risk assessment was conducted to determine whether measured concentrations of individual or cumulative (combined) VOCs could potentially cause acute (short-term) adverse health effects. The health risk calculations described in this report were performed per federal and state guidance. The risk assessment resulted in the following overall findings:

- All measured VOCs (individual and cumulative) in the 1-hour sensor-triggered sample on September 23, 2024, were below their respective acute health-based reference levels.
- The cumulative acute health risks calculated from the sensor-triggered summa canister air sample data were higher than the quarterly planned sample data collected previously at the same location (Central Elementary School). However, the measured concentrations collected during this triggered sample are not expected to cause adverse acute health effects, even for sensitive subpopulations.

1.0 INTRODUCTION

In response to feedback received by Suncor Energy (U.S.A.) Inc. (Suncor) through community engagement conducted in the fall of 2020, Suncor voluntarily committed to developing a continuous, near real-time air monitoring program to gain insight into air quality for neighborhoods in the vicinity of the Suncor refinery in Commerce City, Colorado. Montrose Environmental Group - Air Quality Services, LLC (Montrose) was contracted by Suncor to deploy, operate and maintain the network in the Commerce City and North Denver (CCND) neighborhoods. Air monitoring was accomplished through three separate technical approaches: (1) continuous, near real-time monitoring for the following analytes: carbon monoxide (CO), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), nitric oxide (NO), nitrogen dioxide (NO₂), particulate matter (PM_{2.5}) and total volatile organic compounds (VOCs); (2) periodic collection and laboratory analysis for the presence of specific VOCs from Summa canisters; and (3) periodic real-time air monitoring throughout neighborhoods using a mobile monitoring van to detect presence of specific VOCs. An "analyte" is a material that a measuring device is designed to detect and measure. It may be a chemical gas, an airborne particle, or other type of material.

The objective of this report is to provide results from a sensor-triggered canister sample collected on September 23, 2024, at Central Elementary School. The measured concentrations for this single sample were compared to established acute (short-term) health-based reference levels and compared to planned samples collected at the same location.

1.1 Air Monitoring Site Description

Ten monitors and Summa canister sampling locations were positioned throughout the CCND neighborhoods within a three-mile radius of the refinery operations. The monitor locations are shown in Figure 1-1 and described in Table 1-1; they were selected based on the following criteria:

- Historical wind pattern data,
- Proximity to the refinery and non-refinery sources,
- Existing infrastructure, as well as site access and safety,
- Community feedback

FIGURE 1-1
MAP OF TEN CCND MONITOR LOCATIONS

5

TABLE 1-1CCND MONITORS AND SUMMA CANISTER SAMPLING LOCATIONS

			Distance from Refinery	
Location ID	Secondary ID	GPS Coordinates	Center (miles)	Cross Streets
CM1	Rose Hill Elementary School	39.80164, -104.90882	2.0	E. 58 th Ave. & Oneida St., Commerce City
CM2	Suncor Refinery Business Center	39.79599, -104.95603	0.70	Brighton Blvd. & York St., Commerce City
СМЗ	Adams City High School	39.82736, -104.90193	2.9	E. 72 nd Ave. & Quebec Pkwy, Commerce City
CM4	Adams City Middle School	39.82893, -104.93499	1.9	Birch St. & E. 72 nd Ave., Commerce City
CM5	Central Elementary School	39.81457, -104.91928	1.7	Holly St. & E 64 th Ave., Commerce City
CM6	Focus Points Family Resource Center	39.78436, -104.95663	1.4	Columbine St. & 48 th Ave., Denver
CM7	Kearney Middle School	39.80888, -104.91545	1.7	E. 62 nd Ave. & Kearney St., Commerce City
CM8	Monroe	39.81560, -104.94503	0.85	Monroe St. & E. 64 th Ave., Denver
СМ9	48 th and Race	39.78455, -104.96264	1.7	East 48 th Ave. & Race St., Denver
CM10	Alsup Elementary School	39.82026, -104.93663	1.3	East 68 th Ave. & Birch St., Commerce City

2.0 METHODS

2.1 Air Sampling Methods

A VOC sensor-triggered air sample collection occurred at 3:27 a.m. at the CM5 – Central Elementary School location on September 23, 2024.

Upon detection of 1 ppm or greater of total VOCs at the VOC monitor for a 1-minute average period, a triggered sample is collected over a 1-hour period by an Entech Instruments Silonite™ CS1200E Passive Canister Sampler connected to 6-liter chemically inert stainless steel "Summa" canister. Prior to deployment, the Summa canister was cleaned and blanked for use according to laboratory Standard Operating Procedures (SOP). Air sampling and analysis was conducted in accordance with the Quality Assurance Project Plan (QAPP) available online at www.ccnd-air.com/documents. The triggered canister sample was shipped to Enthalpy Analytical in Durham, North Carolina. The United States Environmental Protection Agency (USEPA) Compendium Method TO-14A "Determination of Volatile Organic Compounds (VOCs) in Ambient Air using Specially Prepared Canisters with Subsequent Analysis by Gas Chromatography" and TO-15 entitled "Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)" was followed for both sampling and analysis methodology. A total of 59 analytes were selected for analysis in this assessment based on the typical suite of analytes monitored for in urban and industrial areas and accounting for laboratory analysis capabilities (Table 1-2).

Planned air samples at ten CCND monitoring locations, which were used in this report to compare to the triggered canister data, were collected during the second quarter of 2024 during a time when near real-time VOC monitors indicated total VOC concentrations to be less than the 1-ppm trigger level. The planned samples were collected and analyzed using the same methods as the triggered sample and full results are available in a separate report.

TABLE 1-2SELECTED ANALYTES MEASURED IN SUMMA CANISTERS

Ethylene	Isopentane	3-Methylpentane	3-Methylheptane	2,4- Dimethylpentane
Acetylene	1-Pentene	1-Hexene	Nonane	2,3- Dimethylpentane
Ethane	Pentane	1,3-Butadiene	3-Ethyltoluene	1,2,3- Trimethylbenzene
Propylene	Isoprene	Heptane	2-Ethyltoluene	1,3,5- Trimethylbenzene
Propane	Trans-2-Pentene	2-Methylhexane	Decane	2,2,4- Trimethylpentane
Isobutane	Cis-2-Pentene	Toluene	Ethylbenzene	Tetrachloroethene
1-Butene	2,2- Dimethylbutane	3-Methylhexane	m-Diethylbenzene	1,2,4- Trimethylbenzene
Butane	Cyclopentane	Methylcyclohexane	p-Diethylbenzene	Methylcyclopentane
Trans-2-Butene	Cyclohexane	Hexane	Undecane	2,3,4- Trimethylpentane
Cis-2-Butene	2-Methylpentane	2-Methylheptane	Dodecane	2,3-Dimethylbutane
m-/p-Xylenes	o-Xylene	4-Ethyltoluene	Benzene	Carbon disulfide
n-Octane	Isopropylbenzene	n-Propylbenzene	Naphthalene	

2.2 Screening Health Risk Assessment Methods

CTEH® conducted a screening-level public health risk assessment consistent with federal risk assessment guidelines to determine whether the detected concentrations of individual or cumulative (combined) analytes in the triggered air sample could potentially pose acute (short-term) health impacts and evaluate the data compared to samples collected during planned non-event conditions. A tiered approach to the risk assessment was used. This approach involves one or more iterative steps (or tiers) being performed in which health risks are calculated and evaluated multiple times. In most cases, risk assessors cannot know exactly the level of chemical exposure experienced by individuals or communities.

The first-tier evaluation of the triggered sample made a health-protective assumption that represents an exposure to a person located at that sampling location for an entire hour during the time the sample was collected. Additionally, the first tier assumes that all analytes measured are exerting an effect on the body in a similar manner, which is rarely the case. If the resulting risk values indicate the lack of likely adverse health effects under these worst-case conditions, then the risk assessment is complete. However, if the risk values suggest a potential for adverse health effects, then a second tier of risk calculations are performed, but this time using more detailed assumptions about exposure that are still simple representations of the real world but are more realistic than the first-tier, worst-case assumptions. Each successive tier represents a more complete characterization of exposure variability and/or uncertainty that requires a corresponding increase in calculation complexity and scientific level of effort.

The first tier of this risk assessment process is called a screening-level risk assessment. The conservative assumptions used for this level of risk calculation represent exposure conditions at the distinct sampling location for the entire sampling duration. An exceedance of an acceptable risk level (defined below) does not necessarily indicate that adverse health effects are likely. The Agency for Toxic Substances and Disease Registry (ATSDR) states, "when health assessors find exposures higher than the MRLs (ATSDR's specific health-based reference levels), it means that they may want to look more closely at a site". In other words, screening-level findings of an estimated exposure to a VOC being higher than a health-based reference level do NOT indicate an actual likelihood of adverse effects but do indicate a need to move to a second tier of analysis and refine the risk assessment process with more realistic detail to determine if an actual risk exists that needs to be mitigated.

The screening-level risk assessment reported here includes calculated hazards from exposure to individually measured chemicals as well as exposure to all measured chemicals at once (cumulative). For individual chemicals, an acute health hazard value was calculated as the exposure concentration (EC) divided by the chemical-specific federal or state established human health-based Reference Level (RL) (Equation 1). The result is referred to as the hazard quotient (HQ). Estimates of EC were derived from the 1-hour average concentrations of each analyte. Using the measured values for the EC conservatively assumes that a hypothetical exposed individual occupies the sampling location area and breathes the measured concentration continuously for an hour up to multiple days (an acute exposure).

The RLs used to calculate the HQs are previously established exposure levels below which no adverse effect in humans is expected. If available, RLs adopted by the Colorado Department of

¹Available at:

https://www.atsdr.cdc.gov/minimalrisklevels/#:~:text=The%20ATSDR%2C%20in%20response%20to,minimal%20risk%20levels%20 (MRLs).

Public Health and Environment (CDPHE) were selected for use within this assessment. If the analyte was not listed by CDPHE, CTEH® followed a federal and state recommended hierarchy for selection of RLs². Acute HQs were calculated as follows:

Eq. 1 – Hazard Quotient (HQ) Equation

HQ= EC/ RL

Where:

HQ= Hazard Quotient

EC= 1-hour average air concentration

RL= Acute Health-based Reference Level (from USEPA, ATSDR, Cal EPA and TCEQ)

Health risks from potential cumulative exposures to all detected analytes were calculated by adding together each individual analyte's HQ calculated for a given sampling location. The sum of all the individual HQs is called a Hazard Index (HI). Adding together all the HQs is also a very health-conservative approach because it assumes that all the measured analytes exert an adverse effect on the body in a similar manner, which is rarely the case.

A HQ or HI of less than or equal to one is an indication that the estimated exposure is likely to be without an appreciable risk of adverse health effects, even for sensitive sub-populations. The potential for adverse health effects increases as HQ or HI increase above one, but it is not known by how much. Therefore, calculated hazard values in this assessment that are equal to or less than one indicates an acceptable risk level. HQ or HI values of greater than one would prompt a second-tier risk assessment beyond the screening-level assessment.

According to the USEPA and ATSDR, the federal agencies that establish the RLs note that these values "are set below levels that, based on current information, might cause adverse health effects in the people most sensitive." This is because RLs are based on observed toxicity in human or animal studies with an added safety factor to account for uncertainties in the toxicity data. For example, ATSDR identified the lowest observed adverse effect level (LOAEL) for acute exposure to benzene as 10,200 parts per billion (ppb), based on a study of mice exposed six hours per day for six days. ATSDR then applied a combined safety factor of 300 to derive the final RL to account for several uncertainties, including differences between mice and humans and for sensitive individuals³. Therefore, it is scientifically incorrect to assume that all real-world exposures to a chemical at levels higher than an RL likely will result in an adverse effect.

The USEPA also has established values for use in emergency situations, termed Acute Exposure Guideline Levels (AEGLs). Unlike health-based reference levels that can be thousands of times below exposure levels where adverse effects are observed, AEGL values are levels at which different acute adverse health effects may be anticipated to occur. According to USEPA, "AEGL-1 represent exposure levels that could produce mild and progressively increasing but transient and non-disabling odor, taste and sensory irritation or certain asymptomatic, non-sensory effects. With increasing airborne concentration above each AEGL, there is a progressive increase in the likelihood of occurrence and the severity of effects described for each corresponding AEGL [i.e., AEGL-2 or AEGL-3]." The AEGL-1 60-minute value, if available for the applicable analyte, was

² Available at: https://drive.google.com/file/d/1P2KEvu0MFiyzQAOQtjQUclqR-WGh1bEX/view

³ Available at: https://www.atsdr.cdc.gov/toxprofiles/tp3-c3.pdf

CCND Community Monitoring September 23, 2024, Event

also used for comparison purposes because it is more precautionary (than AEGL-2 or AEGL-3) as the AEGL-1 level reflects potential health impacts that are reversible upon cessation of exposure.

3.0 RESULTS

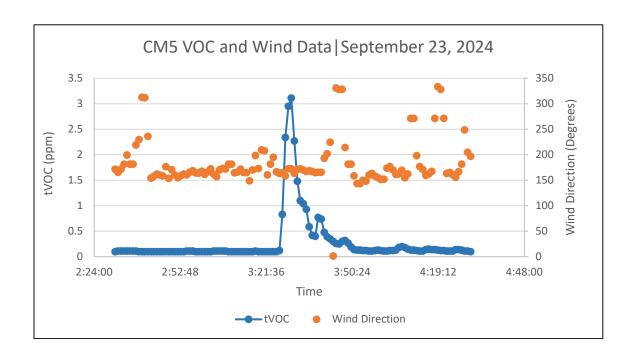
3.1 Summary of Air Sampling Results

The total VOC reading on the CM5 - Central Elementary School monitor was part of an event (total VOCs measured above 1 ppm) that occurred at 3:27 a.m. on September 23, 2024. The total VOC reading was observed above 1 ppm for one minute and resulted in triggering a 1-hour Summa canister collection. The total VOC concentration during the one-minute time interval was 3.11 ppm.

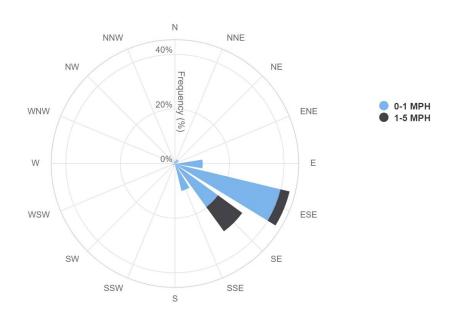
The Summa canister's compound-specific concentration results are shown in Table 1-3. Prior to, during and after the total VOC readings above 1 ppm the winds were primarily coming from the Northeast (NE) (Figures 1-2 and 1-3). Figure 1-2 provides the 1-minute total VOC concentrations and the wind direction data prior to, during and after this event period. Figure 1-3 displays a wind rose of data collected at the CM5 location from 2:30 a.m. to 4:30 a.m. on September 23, 2024.

Planned samples at ten CCND sampling locations (including Central Elementary School) were collected in Q2 2024 to evaluate typical VOC levels in the CCND neighborhoods. For comparison, a summary of the planned air sample taken at the CCND CM5 – Central Elementary School monitoring location is shown in Table 1-3.

TABLE 1-3
CM5 – CENTRAL ELEMENTARY SCHOOL LOCATION PLANNED AND SENSOR TRIGGERED
EVENT SAMPLE CONCENTRATIONS (PPBV)


		Planned Air Sample	Sensor Triggered Event Sample
Compound Name	Cas No	5/17/2024	9/23/2024
1-Butene	106-98-9	< 0.045	4.7
1-Hexene	592-41-6	< 0.043	0.84
1-Pentene	109-67-1	< 0.045	9.6
1,2,3-Trimethylbenzene	526-73-8	0.051(J)	< 0.18
1,2,4-Trimethylbenzene	95-63-6	0.066 (J)	0.42
1,3-Butadiene	106-99-0	< 0.045	0.054 (J)
1,3-Diethylbenzene	141-93-5	< 0.039	< 0.21
1,3,5-Trimethylbenzene	108-67-8	< 0.034	0.14
1,4-Diethylbenzene	105-05-5	0.049 (J)	< 0.23
2-Ethyltoluene	611-14-3	< 0.042	< 0.14
2-Methylheptane	592-27-8	< 0.044	1.3
2-Methylhexane	591-76-4	0.084 (J)	8.3
2-Methylpentane	107-83-5	0.21 (J)	49
2,2-Dimethylbutane	75-83-2	< 0.044	4.3
2,2,4-Trimethylpentane	540-84-1	0.11	10
2,3-Dimethylbutane	79-29-8	0.045 (J)	9.9
2,3-Dimethylpentane	565-59-3	0.071 (J)	2.8
2,3,4-Trimethylpentane	565-75-3	< 0.044	0.45 (J)
2,4-Dimethylpentane	108-08-7	0.14 (J)	3
3-Ethyltoluene	620-14-4	0.078 (B,J)	0.4 (B,J)
3-Methylheptane	589-81-1	< 0.043	1.3
3-Methylhexane	589-34-4	0.18 (J)	7.7
3-Methylpentane	96-14-0	0.16 (J)	27
4-Ethyltoluene	622-96-8	< 0.041	0.12
Acetylene	74-86-2	0.55	0.12
Benzene	71-43-2	0.55	5.5
Butane	106-97-8	0.8	120
Carbon disulfide	75-15-0	< 0.034	0.025 (J)
Cis-2-Butene	590-18-1	< 0.045	16
Cis-2-Butene Cis-2-Pentene	627-20-3	< 0.045	12
Cyclohexane	110-82-7	0.07	11
	287-92-3	0.042 (J)	8.8
Cyclopentane Decane	124-18-5	< 0.042 (3)	< 0.14
Dodecane Dodecane	112-40-3	0.059 (J,b)	< 1.8
	74-84-0	4.7	
Ethane	100-41-4	0.073	14 0.77
Ethylbenzene Ethylpen		0.073	1.5
Ethylene	74-85-1		
Heptane Hexane	142-82-5 110-54-3	0.13 (J) 0.31	5.3 34
	75-28-5		59
Isobutane	75-28-5 78-78-4	0.29 (J) 0.94	290
Isopentane	78-78-4 78-79-5	< 0.044	0.3 (J)
Isoprene	78-79-5 98-82-8	< 0.044	* / / .
Isopropylbenzene m.p. Vylonos		0.034	0.045 (J) 2.9
m,p-Xylenes	179601-23-1 108-87-2		3.7
Methylcyclohexane Mothylcyclopoptapo	96-37-7	0.11 (J) 0.12 (J)	16
Methylcyclopentane	96-37-7 111-65-9		16
n-Octane Naphthalene	91-20-3	0.068 (J)	< 0.081
•	91-20-3 111-84-2	< 0.051	
Nonane		0.045 (J)	0.23 (J)
o-Xylene	95-47-6	0.078	0.85 150
Pentane	109-66-0	0.87	
Propane	74-98-6	1.6	8
Propylbenzene	103-65-1	< 0.034	0.11
Propylene	115-07-1	0.23 (J)	0.35 (J)
Tetrachloroethene	127-18-4	< 0.035	< 0.025
Toluene	108-88-3	0.45	12
Trans-2-Butene	624-64-6	< 0.042	17
Trans-2-Pentene	646-04-8	< 0.051	23
Undecane	1120-21-4	0.053 (J,b)	< 0.24

All results presented in parts per billion (ppb)


Laboratory non-detections are reported as less than ("<") the method detection limit.

Result qualifiers: (1) flag indicates the reported value is an estimate and was detected below the reporting limit; (B) flag indicates that contamination was found in associated Method Blank; (b) see lab report narrative

FIGURE 1-2
CM5 VOC AND WIND DIRECTION | September 23, 2024, 2:30 A.M. - 4:30 A.M.

FIGURE 1-3 CM5 WIND ROSE | September 23, 2024, 2:30 A.M. – 4:30 A.M.

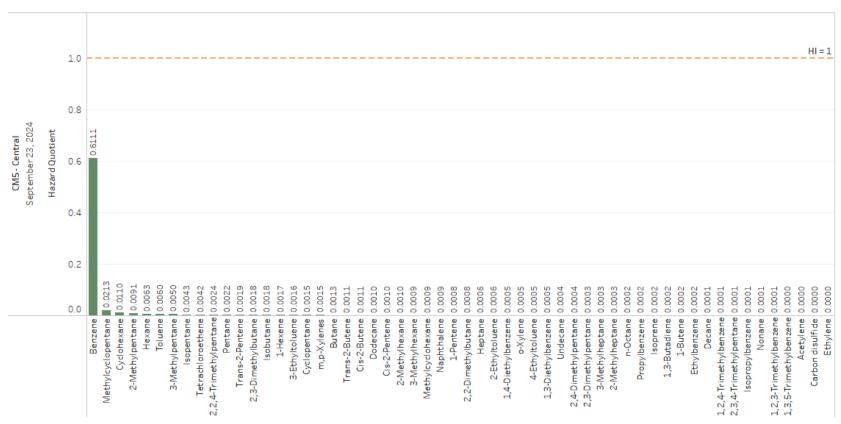
3.2 Screening Health Risk Assessment Results

The purpose of this screening health risk assessment was to determine whether exposure to the concentrations of individual or cumulative VOCs measured in the September 23, 2024, sensor-triggered event sample, collected at Central Elementary School, could potentially pose acute (short-term) health hazards. According to USEPA guidelines (USEPA 1989, 2004), a HQ or HI less than or equal to one indicates that exposures are likely to be without any appreciable risk of adverse acute health effects, even for sensitive sub-populations. The calculated acute HQ and HI are summarized in Table 1-4. In general, the data and health risk assessment indicate:

- The September 23, 2024, sensor-triggered event sample concentrations were below their respective acute health-based reference levels (Table 1-4, Figure 1-4)
- The September 23, 2024, sensor-triggered event sample cumulative hazard index (CM-5 HI = 0.71) was higher than the quarterly planned air sample collected at the same location during the previous quarter (HI = 0.03) (Figure 1-5). However, the measured concentrations during this triggered sample are not expected to cause an appreciable risk of adverse acute health effects, even for sensitive sub-populations.

TABLE 1-4
SUMMA CANISTER SCREENING HEALTH RISK ASSESSMENT: COMPOUND-SPECIFIC
HAZARD QUOTIENTS AND HAZARD INDICES FOR CCND CM5 - CENTRAL ELEMENTARY
SCHOOL MONITORING SITE

					Hazard	Quotient
		AEGL 160	Health Based		Planned Air Sample	Sensor Triggered Even Sample
		min Value	Reference		May 17, 2024	September 23, 2024
Compound Name	Cas No	(ppb)	Level (ppb)	Source		
1-Butene	106-98-9	NR	27,000	TCEQ Short-Term AMCV	0.0000	0.0002
1-Hexene	592-41-6	NR	500	TCEQ Short-Term AMCV	0.0001	0.0017
1-Pentene	109-67-1	NR	12,000	TCEQ Short-Term AMCV	0.0000	0.0008
1,2,3-Trimethylbenzene	526-73-8	140,000	3,000	TCEQ Short-Term AMCV	0.0000	0.0001
1,2,4-Trimethylbenzene	95-63-6	140,000	3,000	TCEQ Short-Term AMCV	0.0000	0.0001
1,3-Butadiene	106-99-0	670,000	298	OEHHA Acute REL	0.0002	0.0002
1,3-Diethylbenzene	141-93-5	NR	450	TCEQ Short-Term AMCV	0.0001	0.0005
1,3,5-Trimethylbenzene	108-67-8	140,000	3,000	TCEQ Short-Term AMCV TCEO Short-Term AMCV	0.0000	0.0005
1,4-Diethylbenzene	105-05-5	NR	450	TCEQ Short-Term AMCV	0.0001	0.0005
2-Ethyltoluene	611-14-3	NR	250			
2-Methylheptane	592-27-8	NR	4,100	TCEQ Short-Term AMCV	0.0000	0.0003
2-Methylhexane	591-76-4	NR	8,300	TCEQ Short-Term AMCV	0.0000	0.0010 0.0091
2-Methylpentane	107-83-5	NR	5,400	TCEQ Short-Term AMCV		
2,2-Dimethylbutane	75-83-2 540-84-1	NR NR	5,400 4,100	TCEQ Short-Term AMCV TCEQ Short-Term AMCV	0.0000	0.0008
2,2,4-Trimethylpentane	79-29-8	NR NR	5.400	TCEQ Short-Term AMCV	0.0000	0.0024
2,3-Dimethylbutane			,	TCEQ Short-Term AMCV		
2,3-Dimethylpentane	565-59-3 565-75-3	NR NR	8,300 4.100	TCEQ Short-Term AMCV	0.0000	0.0003 0.0001
2,3,4-Trimethylpentane			,		0.0000	0.0001
2,4-Dimethylpentane	108-08-7	NR	8,300	TCEQ Short-Term AMCV		
3-Ethyltoluene	620-14-4	NR NR	250 4,100	TCEQ Short-Term AMCV TCEQ Short-Term AMCV	0.0003	0.0016 0.0003
3-Methylheptane	589-81-1				0.0000	0.0005
3-Methylhexane	589-34-4	NR	8,300	TCEQ Short-Term AMCV		
3-Methylpentane	96-14-0	NR	5,400	TCEQ Short-Term AMCV	0.0000	0.0050
4-Ethyltoluene	622-96-8	NR	250	TCEQ Short-Term AMCV	0.0002	0.0005
Acetylene	74-86-2	NR	25,000	TCEQ Short-Term AMCV	0.0000	0.0000
Benzene	71-43-2	52,000	9	ATSDR Acute MRL	0.0222	0.6111
Butane	106-97-8	5,500,000	92,000	TCEQ Short-Term AMCV	0.0000	0.0013
Carbon disulfide	75-15-0	13,000	1,990	OEHHA Acute REL	0.0000	0.0000
Cis-2-Butene	590-18-1	NR	15,000	TCEQ Short-Term AMCV	0.0000	0.0011
Cis-2-Pentene	627-20-3	NR	12,000	TCEQ Short-Term AMCV	0.0000	0.0010
Cyclohexane	110-82-7	NR	1,000	TCEQ Short-Term AMCV	0.0001	0.0110
Cyclopentane	287-92-3	NR	5,900	TCEQ Short-Term AMCV	0.0000	0.0015
Decane	124-18-5	NR	1,000	TCEQ Short-Term AMCV	0.0000	0.0001
Dodecane	112-40-3	NR	1,720	CDPHE Acute	0.0000	0.0010
Ethane	74-84-0	NR	NA	NA	NA	NA
Ethylbenzene	100-41-4	33,000	5,000	ATSDR Acute MRL	0.0000	0.0002
Ethylene	74-85-1	NR	500,000	TCEQ Short-Term AMCV	0.0000	0.0000
Heptane	142-82-5	NR	8,300	TCEQ Short-Term AMCV	0.0000	0.0006
Hexane	110-54-3	NR	5,400	TCEQ Short-Term AMCV	0.0001	0.0063
Isobutane	75-28-5	NR	33,000	TCEQ Short-Term AMCV	0.0000	0.0018
Isopentane	78-78-4	NR	68,000	TCEQ Short-Term AMCV	0.0000	0.0043
soprene	78-79-5	NR	1,400	TCEQ Short-Term AMCV	0.0000	0.0002
Isopropylbenzene	98-82-8	50,000	510	TCEQ Short-Term AMCV	0.0001	0.0001
m,p-Xylenes	179601-23-1	130,000	2,000	ATSDR Acute MRL	0.0001	0.0014
Methylcyclohexane	108-87-2	NR	4,000	TCEQ Short-Term AMCV	0.0000	0.0009
Methylcyclopentane	96-37-7	NR	750	TCEQ Short-Term AMCV	0.0002	0.0213
n-Octane	111-65-9	NR	4,100	TCEQ Short-Term AMCV	0.0000	0.0002
Naphthalene	91-20-3	NR	95	TCEQ Short-Term AMCV	0.0005	0.0009
Vonane	111-84-2	NR	3,000	TCEQ Short-Term AMCV	0.0000	0.0001
o-Xylene	95-47-6	130,000	1,700	ATSDR Acute MRL	0.0000	0.0005
Pentane	109-66-0	NR	68,000	TCEQ Short-Term AMCV	0.0000	0.0022
Propane	74-98-6	5,500,000	NA	NA	NA	NA
Propylbenzene	103-65-1	NR	510	TCEQ Short-Term AMCV	0.0001	0.0002
Propylene	115-07-1	NR	NA	NA	NA	NA
Tetrachloroethene	127-18-4	35,000	6	ATSDR Acute MRL	0.0058	0.0042
Toluene	108-88-3	67,000	2,000	ATSDR Acute MRL	0.0002	0.0060
Trans-2-Butene	624-64-6	NR	15,000	TCEQ Short-Term AMCV	0.0000	0.0011
Trans-2-Pentene	646-04-8	NR	12,000	TCEQ Short-Term AMCV	0.0000	0.0019
Undecane	1120-21-4	NR	550	TCEQ Short-Term AMCV	0.0001	0.0004
				Hazard Index	0.0311	0.7123


NA = Not Available

 ${\sf NR}$ = According to EPA, AEGL is "Not Recommended due to insufficient data"

pbb - parts per billion

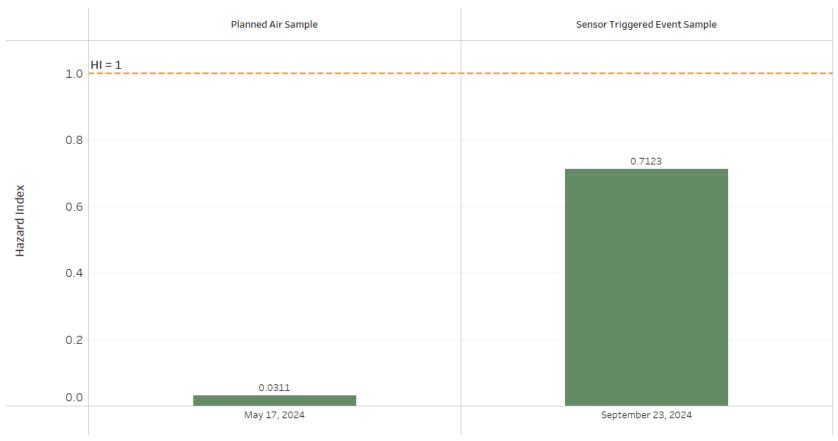

AMCV - Air Monitoring Comparison Value; MRL - Minimum Risk Level; REL - Reference Exposure Level; TCEQ - Texas Commission on Environmental Quality; ATSDR - Agency for Toxic Substances and Disease Registry; OEHHA - Office of Environmental Health Hazard Assessment; CDPHE - Colorado Department of Public Health and Environment

FIGURE 1-4
COMPOUND-SPECIFIC HAZARD QUOTIENTS FOR VOCS DETECTED IN THE September 23, 2024, SENSOR-TRIGGERED EVENT SAMPLE AT CM5 CENTRAL ELEMENTARY SCHOOL LOCATION

Hazard quotient (HQ) is the exposure concentration (EC), or air concentration divided by the established health based reference level (RL) for each compound. According to the EPA, a HQ less than 1 (orange line) indicates that exposures are likely to be without appreciable risk of adverse acute health effects, even for sensitive sub-populations. Propylene, propane, and ethane did not have a RL and are not displayed.

FIGURE 1-5
HAZARD INDICIES AT THE CCND CM5 - CENTRAL ELEMENTARY SCHOOL LOCATION FOR PLANNED AND SENSOR
TRIGGERED AIR SAMPLES

Hazard Index (HI) is the sum of all combined hazard quotients (HQ). According to EPA, a HI less than or equal to one (orange line) indicates that exposures are likely to be without any appreciable risk of adverse acute health effects, even for sensitive sub-populations.

4.0 Uncertainty Evaluation

Scientific uncertainty is inherent in each step of the risk assessment process because all risk assessments incorporate a variety of assumptions and professional judgments (USEPA 1989, 2004). Therefore, the acute hazard estimates presented in this assessment are conditional estimates given a considerable number of assumptions about exposure and toxicity. This screening-level risk assessment relied on a combination of health-protective scenarios and toxicity information (i.e., exposure durations, toxicological uncertainty factors, cumulative risk evaluations). This approach was selected to help risk management decision making. Because of these assumptions, the estimates of acute hazards are themselves uncertain but likely to be overestimated compared to actual.

This risk assessment did not address past or present health outcomes associated with current or past exposures. As such, this risk assessment cannot be used to make realistic predictions of biological effects and/or used to determine whether someone is ill (cancer or other adverse health effects) due to past or current exposures. This risk assessment was limited to inhalation exposures from outdoor exposures to all potential sources.

5.0 Program Changes

No program changes occurred during this reporting period.

Prepared by:

Antonios Tasoglou, PhD PMP Emerging Technology manager Montrose Air Quality Services Michael Lumpkin, PhD, DABT Senior Toxicologist

Michael H. Lungshin

CTEH®, LLC

APPENDIX A SAMPLE CHAIN OF CUSTODIES

Ī	ENTHALPY				Air C	hain of	Custoc	dy Reco	ord	Turn	Around Ti	me (rus	sh b	y ad	van	ced	noti	ce o	nly)	_		
- 1			CNI	HA	LPY		Lab No: 0			-		7 Day:	1	5 Day:	Т	Х	_	3 Day	_	Т		
		ANALYTICAL				Page:	1		of	1	2 Day:		1 Day:				Cust	om TA	AT:			
ı	Enthalpy Analytical - Houston Co							CUSTO	OMER II	NFORM	/ATION			PRO	PROJECT INFORMATION							_
							Company:	МА	QS				Name:					Sund	cor			
							Report To: David Smith Nu			Number:	Number:			PROJ-022555								
							Email:	dav	vidsmitl	h1@m	ontrose-	env.com	P.O. #:		PO-012395							
							Address:	990	W 43rd	Ave, Der	nver, CO 8	0211	Address:		N/A							
							Phone:	512	-632-718	35			Global ID:					N/	A			
							Fax:	N/A					Sampled By:					MAG	QS .			
- 1															Г		Ana	lysis	Requ	estec	t	
- 1																П	П		П	T		Т
- 1			**Canic	tar nraccur	e may increase as s	camnles	are chinni	ng to a	differe	nt alay	ation				ı							
r	-		Carris	Type	Equipment I			ing to a	umere			nformation			\mathbf{x}							
- 1		Committee ID (I)	- ID)	(I) Indoor		Size	Flow	Samp	le S	ample		Sample	Sample	Vacuum	(BTEX)	Suncor List						
- 1		Sample ID (Locati	on ID)	(A) Ambient (SV) Soil Vapor	Canister ID	(1L, 3L,	Controller	Start	t i	Start	Vacuum Start ("Hg)	End	End	End	TO-15 (Cor						
				(S) Source		6L, 15L)	ID	Date		Time		Date	Time	("Hg)	욘	Sur				\perp	\perp	L
301	1	Central Elementa	ary School	Α	C70529	6L		9/23/2	24 3:	27 AM	24	9/23/24	4:27AM	1		Х						
	2															Ш	\Box			\perp	\perp	L
	3															Ц			_		\perp	L
	4															Ц			\perp	\perp	\perp	L
	5															Ц	\perp	\Box	\perp	\perp	\perp	┸
	6													en 10-2 E						\perp	╄	┸
	7													SEP	24	24	PH	Z	ill.	\perp	\perp	╀
L	8														2	5	8.	oC	4	\perp	\perp	╄
-	9														۴	\rightarrow	4		9	+	╄	\perp
	10									7-				L,					N		\perp	L
-	_			Signatur				Name		_		Company /		_					Time			
1	¹ Relinquished By: David Smith			David Smith Montrose CPM			9/23/2024 1130 AM															
1	_	ceived By:	Elizer	- Shac	-l	Eli	jan s	2010	7	_	Enth	apy/60	ch	00	1-2	4-2	4	ソー	4:4	0		
1		inquished By:	0							+		<i>-</i>										
E-	_	ceived By:								+					_			_	_	_		
- I	_	inquished By:								+				_								
Ľ	Red	ceived By:					2	20														

CC	ND	Com	ımu	nity	Mo	onito	ring
Se	pten	nber	23,	202	4,	Ever	nt

THIS IS THE LAST PAGE OF THIS DOCUMENT